
HIGH PERFORMANCE PARALLEL IO AND POST-PROCESSING

01.03.2021 I SEBASTIAN LÜHRS (S.LUEHRS@FZ-JUELICH.DE)

PARALLEL I/O STRATEGIES AND OPTIMIZATION

WITH A FOCUS ON SIONLIB

HANDS ON PREPARATION

HPC access

3

• Register and join the course project and wait for
acceptance:
https://judoor.fz-
juelich.de/projects/join/training2022

JUDOOR account and
part of the training2022

project?

• Accept Usage Agreement of
JUWELS and JUDAC in your JUDOOR account:

Accepted usage
agreement?

• Only necessary for non Jupyter based access

• Follow the Guideline document to create your key

• Add your public IP address during upload (need to
be renewed on a daily basis)

Optional: SSH Key in
place?

• Login to https://jupyter-jsc.fz-juelich.de and follow
the Jupyter registration steps

Alternative: Jupyter
registration

https://judoor.fz-juelich.de/projects/join/training2000

PARALLEL I/O STRATEGIES

Parallel I/O Strategies
One process performs I/O

5

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

- I/O bandwidth is limited to the rate of this single process

- Additional communication might be necessary

- Other processes may idle and waste computing resources during I/O time

One process performs I/O

6

Parallel I/O Pitfalls
Frequent flushing on small blocks

7

•Modern file systems in HPC have large file system blocks (e.g. 4MB)

•A flush on a file handle forces the file system to perform all pending write operations

• If application writes in small data blocks, the same file system block it has to be read and

written multiple times

•Performance degradation due to the inability to combine several write calls

Parallel I/O Strategies
Task-local files

8

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

+ No coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to be merged to create a canonical dataset

- File system might serialize meta data modification

Task-local files

9

Parallel I/O Pitfalls
Serialization of meta data modification

10

Example: Creating files in parallel in the same directory

The creation of 2.097.152 files costs 113.595 core hours on JUQUEEN!

Parallel file creation on JUQUEEN

0.5-28 racks, 64 tasks/node
W. Frings

• Meta-data wall on file level

• File changes by multiple processes can

cause serialization

• File meta-data management

• Locking

file i-nodefile i-node
indirect

blocks

indirect

blocksI/O-

client

I/O-

client

FS blocksFS blocks

file i-node
indirect

blocksI/O-

client

FS blocks

Parallel I/O Strategies
Shared files

11

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Parallel I/O Strategies

+ Number of files is independent of number of processes

+ File can be in canonical representation (no post-processing)

- Uncoordinated client requests might induce time penalties

- File layout may induce false sharing of file system blocks

Shared files

12

Parallel I/O Pitfalls
False sharing of file system blocks

13

• Data blocks of individual processes do not fill up a complete file system block

• Several processes share a file system block

• Exclusive access (e.g. write) must be serialized

• The more processes have to synchronize the more waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data

task 1

data

task 2
… …

lock

t1 t2

lock

I/O Workflow

14

• Post processing can be very time-consuming (> data creation)

• Widely used portable data formats avoid post processing

• Data transportation time can be long:

• Use shared file system for file access, avoid raw data transport

• Avoid renaming/moving of big files (can block backup)

data creation

data post processing

(merge files, switch to

different file format) visualization

Parallel I/O Pitfalls

•Endianness (byte order) of binary data

•Conversion of files might be necessary and expensive

Portability

15

2,712,847,316

=

10100001 10110010 11000011 11010100

Address Little Endian Big Endian

1000 11010100 10100001

1001 11000011 10110010

1002 10110010 11000011

1003 10100001 11010100

Parallel I/O Pitfalls

•Memory order depends on programming language

•Transpose of array might be necessary when using different programming languages in

the same workflow

•Solution: Choosing a portable data format (HDF5, NetCDF)

Portability

16

Address row-major order

(e.g. C/C++)

column-major order

(e.g. Fortran)

1000 1 1

1001 2 4

1002 3 7

1003 4 2

1004 5 5

… … …

1 2 3

4 5 6

7 8 9

Storage Tiers
Different storage tiers with different optimization targets

17

$ARCHIVE

$DATA

$FASTDATA

$SCRATCH

HPST

D
a
ta

 s
ta

g
in

g

Tape Library
JUST 5

Parallel I/O Software Stack

18

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF …

…

S
h

a
re

d

fi
le

Task-

local

files

…

NetCDF-4

SIONlib

data stored in global view in local view

SCALABLE I/O FOR PARALLEL ACCESS TO

TASK-LOCAL FILES WITH SIONLIB

SIONlib Fact Sheet
Data model: n sequences of bytes (untyped data)

Self describing: no

Full control of file content: no

Use cases:

• Data that is by its nature per-task (performance data, logs, …)

• Data for internal use (checkpoints for restarting)

20

Task-Local I/O

T1

Tn

T2

Tn-1

…

T3

Checkpoint, Restart

…
…

Parallel file system
HPC system

21

Task-Local I/O

T

T

T

T

…

T

tasks >> # clients >> # server

N
e

tw
o

rk

Server

N
e
tw

o
rk

Server

…

…

GPFS

Client

…

Client

Client

Client

Client

…
…

…

HPC system
Parallel file system

22

I/O Bottleneck: Parallel File Creation

Serialization!

directory i-node

f f f f f f f f fEntries …

Client

…

T1

Tn

T2

Tn-1

…
T3

Client

Client

Client

Client

GPFS

23

File Format (1): a Single Shared File
• Create and open is fast

• Simplified file handling

• Only one big file

• Logical partitioning required 1,56
0,80 1,14 0,99

1,66 1,20 1,66
3,81

7,93

0

2

4

6

8

10

12

14

16

18

20

1k 2k 4k 8k 16k 32k 64k 128k 256k

of Files

T
im

e
 (

s
)

parallel create&open of shared files

t1 tnt2
…

chunk 1 chunk 2 chunk n

data data data

…

…

Tasks

assigned
used
unused/gap

Shared file

Jugene (JSC, IBM Blue Gene/P, GPFS, fs:work)

24

File Format (2): Metadata
• Offset and data size per task

• Tasks have to specify chunk size in advance

• Data must not exceed chunk size

…

chunk 1 chunk 2 chunk n

data data data

…

…

Tasks t1 tnt2

chunk 1 chunk 2 chunk n

data data data

…

…
Shared

file

m
e

ta
b

lo
c
k

25

File Format (3): Multiple Blocks of Chunks
• Enhancement: define blocks of chunks

• Metadata now with variable length (#tasks * #blocks)

• Second metadata block at the end

• Data of one block does not exceed chunk size

t2

chunk 2

data

Tasks

Shared

file

block 1 …

chunk 2

data

block 2

t1 tn
…

chunk 1 chunk n

data data

…

…

m
e

ta
b

lo
c
k

1

…
chunk 1 chunk n

data data

…

…

m
e

ta
b

lo
c
k

2

26

File Format (4): Alignment to Block Boundaries
• Contention when writing to same file-system block in parallel

FS Block FS Block FS Block

data

task 1

data

task 2
… …

lock

t1 t2

lock

#tasks data size blksize write bandwidth

32768 256 GB aligned 3650.2 MB/s

32768 256 GB not aligned 1863.8 MB/s
Jugene (JSC, IBM Blue Gene/P, GPFS, fs:work)

chunk 2 chunk n

data data

…

…
Shared

file

m
e

ta
b

lo
c
k

1

block 1

…

…

m
e

ta
b

lo
c
k

2

FS Blocks

chunk 1

data

Gaps

27

File Format (5): Multiple Physical Files
• Variable number of underlying physical files

• Bandwidth degradation on GPFS by using a single shared file

data… …

…

data

file i-node
indirect blocks

I/O-

client

FS blocks

t1 t nt n/2
……

…

Tasks

Shared

file

m
e

ta
b

lo
c
k

1

m
e

ta
b

lo
c
k

2

…

m
e

ta
b

lo
c
k

1

m
e

ta
b

lo
c
k

2

t n/2+1

Shared file 1 Shared file 2

m
a

p
p

in
g

28

I/O Bottleneck: Large #tasks & Shared fileS

SIONlib multi-files

Task-local files

SIONlib one shared file

JUQUEEN: 1 rack, 4-64 tasks/node

8 I/O nodes, 512 MiB/node

incl. time for open/close

I/O nodesCompute nodes

Shared multi-files
file inode

T1

Tn

T2

… Meta data

Meta data

file inode

…

…

Client …

Client …

…

29

File Format (6): Coalescing I/O

• data/task very small  sparse file container

• Coalescing I/O: Aggregation of data among tasks

• Variable number of senders/collectors

• Collective write/read operations required

• Advantages: No alignment between chunks of the same collector; less gaps, fewer data

streams, less congestion in I/O infrastructure

• Reduced buffering on collector task (one file system block)

T2T1 Tn
…T3 T4 T5 T6 T7

Chunks

… …

…

FS BlockFS BlockFS Block FS Block

…

 aggregate

 write

30

Version, Download, Installation
• Version: 1.7.6 (November 2019), Version 2.0.0-rc.3 (February 2021)

• Open-source license

• https://www.fz-juelich.de/jsc/sionlib

• sionlib_jsc@fz-juelich.de

• Query version of SIONlib:

S
h

e
ll sionversion

SIONlib Version 1.7.2 (git_rev e7c4192), fileformat

version 5 (sionversion)

References:

• Wolfgang Frings, Felix Wolf, Ventsislav Petkov, Scalable Massively Parallel I/O to Task-Local File, Proceedings

of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, Oregon,

November 14-20, 2009, SC'09, New York, ACM, ISBN 978-1-60558-744-8.

• Wolfgang Frings, Efficient Task-Local I/O Operations of Massively Parallel Applications, Schriften des

Forschungszentrums Jülich, IAS Series, 30, 2016, ISBN 978-3-95806-152-1

31

https://www.fz-juelich.de/jsc/sionlib

Header Files & Datatypes

C #include <sion.h>

F
o

rt
ra

n use sion_f90

use sion_f90_mpi

C sion_int32

C sion_int64

F
o

rt
ra

n INTEGER(kind=4)

F
o

rt
ra

n INTEGER(kind=8)

Special datatypes are typically used for all parameters that are used to describe or to

compute file positions

33

Collective Open (MPI)

• Open a SION file in parallel for reading or writing data

• Collective call, called by each task at the same time

• Accesses one or more physical files of a logical SION file

• Parameters are passed “by reference” to pass back information in read open mode

C

int sion_paropen_mpi (char *fname, const char *file_mode,

int *numFiles,

MPI_Comm gComm, MPI_Comm *lComm,

sion_int64 *chunksize,

sion_int32 *fsblksize,

int *globalrank,

FILE **fileptr, char **newfname);
F

o
rt

ra
n

FSION_PAROPEN_MPI (FNAME, FILE_MODE, NUMFILES,

GCOMM, LCOMM, CHUNKSIZE, FSBLKSIZE,

GLOBALRANK, NEWFNAME, SID)

CHARACTER*(*) FNAME, FILE_MODE, NEWFNAME

INTEGER NUMFILES, FSBLKSIZE, GLOBALRANK, SID

INTEGER GCOMM, LCOMM

INTEGER*8 CHUNKSIZE

34

Parameters of Open Calls I
fname: file name

• Character string describing path and file name

• Will not be extended by SION-specific suffix

• In general multiple physical files are generated

• First file: filename

• All other files: filename + “.” + 6-digit-number (000001 ...)

• All commands and function calls use the base name

file_mode: file mode

• r,rb,br (read block), open existing SION file for reading

• w,wb,bw (write block), create a new SION file, open for write; overwrite if existing

• posix use internally POSIX interface for file access, otherwise ANSI-C

35

Parameters of Open Calls II
sid: SIONlib file descriptor

• Unique integer value, referring internally to data structure

• Associated to SION file (internal file handle)

• Allows multiple simultaneously opened files

• C: return code, Fortran: last parameter of open call

• Integer file handle for Fortran necessary

chunksize: size of data per task

• Pointer of type: sion_int64* (C), Integer*8 (Fortran)

• Size of data in bytes written by this tasks (maximum size of single sion_fwrite call)

• May be different for each task and must be set if open for writing

• Will be increased internally to the next multiple of the file system block size

36

Parameters of Open Calls III
fsblksize: file system block size

• Size of file system block in bytes

• Read-mode: file system block size at write time

• Write-mode: automatically detected by SIONlib if set to -1 (recommended)

fileptr: ANSI-C file pointer

• Can be replaced by NULL pointer if not needed (recommended)

• Will be removed in future versions

• Only needed if wrapper functions for writing and reading are not used

• Not available in Fortran

newfname:

• File name of physical file assigned to this task, NULL can be used

37

Parameters of sion_paropen_mpi
gComm: MPI Communicator

• Call is collective over all tasks of this communicator

• Each task gets assigned one chunk of SION file

• Read: number of tasks must be equivalent to number tasks written to SION file

lComm: MPI Communicator

• Tasks of the same communicator are writing to the same physical file

• MPI_Comm_null if not specified, otherwise Union of lComm must equal gComm

numfiles: Number of physical files

• If using lComm: set numfiles=-1

• Read-mode: parameters will be set by open call

globalrank:

• Rank of task in global communicator gComm
38

Serial Open

• All chunks of all tasks can be selected, via sion_seek (does not work in writing mode)

• Multiple physical files can be handled

• Reads all metadata of all tasks into memory

C

int sion_open (char *fname,

const char *file_mode,

int *ntasks, int *nfiles,

sion_int64 **chunksizes,

sion_int32 *fsblksize,

int **globalranks, FILE **fileptr);
F

o
rt

ra
n

FSION_OPEN (FNAME, FILE_MODE, NTASKS, NUMFILES,

CHUNKSIZES, FSBLKSIZE, GLOBALRANKS, SID)

CHARACTER*(*) FNAME, FILE_MODE

INTEGER NUMFILES, NTASKS, FSBLKSIZE, SID

INTEGER GLOBALRANKS(NTASKS)

INTEGER*8 CHUNKSIZES(NTASKS)

39

Collective Close

• Closes a SION file in parallel on all tasks/threads

• Collective call, called by each task/thread at the same time

• Metadata will be collected from each tasks

• Metadata blocks of SION file will be written in this call

C int sion_parclose_mpi(int sid)

F
o

rt
ra

n FSION_PARCLOSE_MPI (SID, IERR)

INTEGER SID, IERR

40

Serial Close

• Closes a SION file in serial mode

• Metadata blocks of SION file will be written in this call

C int sion_close(int sid)

F
o

rt
ra

n FSION_CLOSE(SID, IERR)

INTEGER SID, IERR

41

Exercise
E

x
e
rc

is
e

1
 –

S
IO

N
li

b
h

e
ll

o
 w

o
rl

d
 Login to JUWELS (using SSH or a Jupyter-Terminal) -> See Guidelines PDF

 Run (necessary after every new login)
source $PROJECT_training2022/setup

 Create a personal copy of the SIONlib template files:
cp -r $PROJECT_training2022/SIONlib $HOME

 Write a parallel program in C or Fortran which creates and closes an empty SIONlib file

 Use a chunksize to store 1000 Integer
 Use the template file exercise_1.c or exercise_1.f90

mpicc exercise_1.c `sionconfig --libs --mpi`

mpif90 `sionconfig --cflags --mpi --f90` exercise_1.f90 `sionconfig

--libs --mpi --f90`

srun –n 10 --reservation=parallel-io-day1 a.out

Check details of the resulting file using:
siondump <sionlib_output_file>

Write Data

• Write size*nmemb bytes of data, beginning from current position

• This size must not exceed the chunksize defined in open call!

• Returns number of elements written

C

size_t sion_fwrite (void *data,

size_t size,

size_t nmemb,

int sid);

F
o

rt
ra

n FSION_WRITE (DATA, SIZE, NMEMB, SID, RC)

INTEGER SID

INTEGER*8 SIZE,NMEMB, RC

43

Exercise

E
x
e
rc

is
e

2
 –

S
IO

N
li
b

w
ri

te
 Extend your parallel program in C or Fortran

 Each task should fill a array with 1000 elements using its unique rank

 Each task should write the array into the prepared SIONlib file
 Use the template file exercise_2.c or exercise_2.f90

Check the resulting file using:
siondump <sionlib_output_file>

44

Read Data

• Read size*nmemb bytes from current position in chunk

• Cannot read more than a chunk

• sion_bytes_avail_in_block must be used to get all available data

• Returns number of elements read

C

size_t sion_fread (void *data,

size_t size,

size_t nmemb,

int sid);

F
o

rt
ra

n FSION_READ (DATA, SIZE, NMEMB, SID, IERR)

INTEGER SIZE, NMEMB, SID, IERR

45

End of File

• Internally this function flushes all buffer and checks current positions against chunk

boundaries

• Moves file pointer to next chunk if end of current chunk is reached

• The function is a task-local function, which can be called independently from other MPI

tasks.

• Returns 1 if pointer is behind last byte of data for this task

C int sion_feof(int sid);

F

FSION_FEOF (SID, IERR)

INTEGER SID, IERR

46

Seek: Change File Position

• Sets the file pointer to a new position, only available in reading mode

• Seek parameters:

• rank: rank number (0,...), or SION_CURRENT_RANK

• chunknum: chunk number (0,...), or SION_CURRENT_BLK

• posinchunk: position (0,...), or SION_CURRENT_POS

C

int sion_seek (int sid,

int rank,

int chunknr,

sion_int64 posinchunk);

F
o

rt
ra

n FSION_SEEK (SID, RANK, CHUNKNUM, POSINCHUNK, IERR)

INTEGER SID, RANK, CHUNKNUM, IERR

INTEGER*8 POSINCHUNK

47

Command line tools

• siondump: Show metadata of file

• sionsplit: Split SIONlib file into task-local files

• sioncat: Extract data from file

• siondefrag: Contracting all of the chunks of a task, which are spread in the file over multiple

blocks, into a single chunk

• sionconfig: Get compile and link options

48

SIONlib 2.0.0

• Currently 2.0.0-rc.3

• Continuous read and write:

• sion_fread can read without limitations, even if the amount of data requested spans multiple

chunks

• sion_fwrite can write without limitations, even if the amount of data specified spans multiple

chunks

• POSIX file pointer access is removed

• Simplified open functions:

int sion_open(const char *name, sion_open_mode mode, int n, const sion_options *options);

• New seek functions

• Removal of deprecated items

• New build system

• See also porting guide: https://apps.fz-juelich.de/jsc/sionlib/docu/2.0.0-rc.3/porting-2.html

49

OPTIMIZATION AND PROFILING

I/O patterns

continuous

• Large continuous data blocks for each

individual process

striped

• Pattern often found while handling

multi dimensional arrays

Task 0

Task 1

Task 3

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

Task 0

Task 1

Task 2

256MiB

128kiB

51

I/O pattern bandwidth

52

continuous striped

read

bandwidth

write

bandwidth

Measurements on JURECA at JSC

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

Collective buffering
• Collective I/O operations not always speed up the general I/O, as more data might be

processed than needed

53

0

1000

2000

3000

4000

5000

6000

independent collective

B
a

n
d

w
id

th
 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes,
128kiB transfer size, strided data layout

Read bandwidth Write bandwidth

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

independent collective

B
a

n
d

w
id

th
 [
M

iB
/s

]

JURECA, IOR, independent vs. collective I/O, 4 nodes,
4MiB transfer size, basic data layout

Read bandwidth Write bandwidth

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

Filesystem specific options

• On Lustre filesystems the user can influence the striping size and the number of

involved object storage targets

54

Default number of OSTs (12) and

default strip-size setting (1MiB)

Increased number of OSTs (126) Increased stripe size to align

with the individual amount of

data per process (256MiB)

Measurements on Eagle at PSNC

This work was supported by the Energy oriented Centre of Excellence (EoCoE),

grant agreement number 676629,

funded within the Horizon2020 framework of the European Union.

Performance hints

• Contiguous datasets are stored in a single block in the file, chunked datasets are split

into multiple chunks which are all stored separately in the file.

• Additional chunk cache is possible

Chunking

55

https://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/

More details in the HDF5 part

Performance hints

• On the fly compression can help to lower the overall datasize:

• HDF5 and NetCDF4 allows compression within a parallel, collective write commands for

chunked datasets

• Gzip (deflate) compression available by default (szip can be added on demand)

• Other compression techniques are available by using filters and external plugins:

https://support.hdfgroup.org/services/filters.html

Compression

56

https://support.hdfgroup.org/services/filters.html

Profiling with Darshan
• I/O profiling tool for parallel applications

• http://www.mcs.anl.gov/research/projects/darshan/

• Integration by using LD_PRELOAD:

• LD_PRELOAD=.../lib/libdarshan.so

57

Profiling with Darshan

58

Profiling with Darshan

59

